Ramgen Power Systems, Inc.

Ramgen Engine Technology Overview Briefing

March 2002

Presented to Galveson

Introduction

The Ramgen engine is potentially a "disruptive technology" to the gas turbine industry.

Its development requires an "open minded" combination of existing industrial gas turbine and aerospace technology thinking.

The technology requires a full engine development program.

Slide 0900-00725

What is the Ramgen Engine?

The Ramgen engine is potentially a "disruptive technology" to the gas turbine industry.

The Ramgen engine represents a unique application of well established ramjet technology to the generation of electrical power, propulsion and drive applications.

Captures the power of flight ramjets in a stationary engine.

System Performance Overview

Performance

• Simple Cycle 37% - 39% LHV

• Recuperated 46%

• Combined Cycle 51%

• Cogeneration 79%

Emissions

< 10 ppmvd NOx @ 15% O2 Base Load

• < 35 ppmvd CO

• UHC's <25 ppm

Cartridge Design for Low Cost Maintenance

Slide 0900-00519 Rev B

Graphic:

5

NASA/DoD/DoE Propulsion and Power Systems Alliance Vision

"Improve propulsion and power generation technology program coordination and collaboration among NASA, DOD, DOE, and Industry – leading to a greater national alliance/reliance among the program participants and stakeholders, and more effective leveraging of program funding."

Alliance Leadership Team

Glenn Research Center

Ramjet to Ramgen

Slide 0900-00035-0002 Graphic: 0900-00222-0002, 0900-00004 Rev C

Ramgen Engine

Ramjet Thrust => Shaft Power

• Ramjet Power = Thrust x Lever Arm x Rotation Rate x No. Ramjets

Slide 0900-00761 Graphic: 0900-00568 8

Combustor Details

Slide 0900-00753 Graphic: 0900-00568 9

2.8 MW Engine/Generator Detail

Slide 0900-00049 Graphic: 0900-00052

Key Design Features

- Power 2 to 5 MW
- First Engine Not Optimized for Production
- Ore-Swirl Impeller and Inlet Guide Vanes
- Cooling Air and Pilor Fuel Slinger System
- Trapped Vortex Concepts Combustor
- Active Tip Gap Control in Engine Case
- Exhaust Guide Vanes and Transition Duct
- Radial or Axial Single Stage Turbine

Design Challenges

- Maintain Acceptable Metal Temperatures on Rotor Assembly
- Develop Tip Clearance System
- Manage Supersonic Wheelspace Drag and Heating
- Utilize Slinger Technology
- Develop LPM Combustor at High G-Loads and Supersonic Boundary Conditions

Ramgen Approach to Tip Leakage Control

Slide 0900-00739-0002 Graphic: 0900-00740

Ramgen Approach to Tip Leakage Control

Tip Clearance Control Experience

- Industrial Engines
 - > Passive
 - Time Constant Matching
 - Clearances Typically 15 mils to 30 mils
 - > Semi-active (no feed back)

Aero Engines

- Active Tip Clearance Control
 - Substantial Improvements In Tip Clearances (over passive system)
 - Clearances Typically 5 mils to 12 mils
- Allison 250-C30, PW 4000 Series, GE CF6 etc.

Active Tip Clearance Control Experience

Slide 0900-00746

Graphic: 0900-00747

Moment Coefficients for Disks in Housings

Slide 0900-00781 Graphic: 0900-00782 16

Centrifugal Pumping in the Slinger

Slide 0900-00787 Graphic: 0900-00788, 0900-00789 17

Comparable Inlet Tested at NASA Lewis

- Inlet Comparable to F-2 Tested At NASA Lewis
 - Design Mach Number = 2.7
 - Total Pressure Recovery = 0.89
 - Bleed Flow/Inlet Captured Flow ≈ 0.07

Slide 0900-00151 Graphic: 0900-00150 18

Flight Inlet Performance Experience

Ramgen Design Goal: P_{t4}/P_{t0}= 0.86

Slide 0900-00148 Graphic: 0900-00149 19

Trapped Vortex Combustor (TVC)

20

TVC combustors have seen wide exposure at WPAFB (GE) and DOE

(NETL)

Slide 0900-00705 Graphic: 0900-00706, 0900-00707, 0900-00708

Trapped Vortex Combustor (TVC)

TVC burners exhibit much leaner LBO limits than conventional systems while maintaining high combustion efficiencies

Slide 0900-00754 Graphic: 0900-00708 21

Predicted Performance Characteristics

Thermal Efficiency

Slide 0900-00527-0002 Graphic: 0900-00526 22